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Abstract
Calculations based on the first-principles pseudopotential plane-wave method and density
functional theory are performed to investigate the electronic properties of graphene, bilayer
graphene, multilayer graphene, and graphite. From an analysis of the electronic band structure
close to the Fermi level, we have quantified the gradual change in the Fermi surface topology
from the point-like structure for graphene to a warped triangular shape for graphite. We have
also discussed the gradual change in the electron and hole effective masses and velocities as the
system evolves from graphene to graphite.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, carbon-based materials such as graphene (a single
hexagonal layer of carbon atoms) and graphite (three-
dimensional hexagonal structure of carbon atoms) have
generated a lot of interest due to their exotic electronic
properties [1, 2]. From the electronic structure point of view,
monolayer graphene has a linear band dispersion near the
corner (K) point of its Brillouin zone originating from the π

and π∗ bondings between the two carbon basis atoms within
the hexagonal unit cell. This results in carriers (electrons and
holes) to behave like massless Dirac particles with very large
Fermi velocity [3]. The carrier mass and velocity are found
to change strongly with the increase in the number of atomic
layers in a graphene sample [3]. The basic understanding of
the electronic band structure and the Fermi surface topology of
graphite has been gained for a long time [4–8]. McClure [5]
has described the energy band structure of graphite close to
the Fermi level using the Slonczewski–Weiss model. This
work has revealed that the electron and hole Fermi surfaces are
highly elongated and aligned along the high-symmetry edges
of the Brillouin zone. The band structure calculations obtained
by Zunger [7] have shown that the electrons are confined to
narrow holes close to the Brillouin zone edges. Moreover,
Tatar and Rabii [8] have reported that the constant-energy
Fermi surfaces of graphite show clear symmetry of the bands
above and below the Fermi level.

Despite these basic understandings, an important area that
has not been investigated thoroughly is the change in the key

electronic parameters, such as carrier effective mass, carrier
velocity, and Fermi surface topology, as the system evolves
from the strictly two-dimensional (sp2) graphene structure
to the three-dimensional (sp2 + pz) graphite structure. For
a full understanding of the origin of these changes, it is
of particular importance to thoroughly investigate the basic
electronic structure such as the dispersion of the band structure
near the high-symmetry edges (such as K and H points) and the
Fermi surface at these particular points.

In this paper, we present a first-principles theoretical
investigation of the electronic band structure of graphene,
bilayer graphene, multilayer graphene, and graphite. From
these calculations, the effective masses and velocities of the
carriers have been estimated, and compared with available
experimental measurements, for each of these structures. An
attempt has been made to explain the gradual change in
the electronic properties from the two-dimensional graphene
structure to the three-dimensional graphite structure.

2. Computational method

We have performed first-principles calculations within the
density functional theory [9] using the local density
approximation (DFT-LDA). The Perdew–Zunger exchange–
correlation scheme [10] was considered to treat the electron–
electron interaction. The electron–ion interaction was treated
by using the ultrasoft pseudopotential for carbon [11]. The
single-particle Kohn–Sham [12] wavefunctions were expanded
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in the framework of a plane-wave basis set with a kinetic
energy cutoff of 60 Ryd. Self-consistent solutions of the Kohn–
Sham equations were obtained by employing the 14 × 14 × 14
and 14 × 14 × 4 k-points Monkhorst–Pack sets [13] within the
Brillouin zones for graphite and other structures, respectively.
For Brillouin zone integration the eigenvalues at the special
k points were thermally smeared by using the Methfessel–
Paxton scheme [14] with a broadening factor of 0.000 02 Ryd.
These parameters have been carefully chosen after several
convergence test calculations.

We adopted a supercell technique for modelling the
multilayer graphene. A supercell contained seven atomic
layers of carbon atoms and a vacuum region equivalent to
eight atomic layers. Relaxed atomic positions were obtained
by using the total energy and force minimization methods.
The equilibrium atomic positions were determined by relaxing
atoms in all except the eighth layer, which was kept in its bulk
position.

3. Results and discussion

3.1. Bulk graphite

We made a series of total energy calculations with different
choices of the in-plane lattice constant a and the ratio c/a of
the out-of-the-plane to the in-plane lattice constants. From
our calculations we determined that the minimum energy
configuration results for the choices a = 2.448 Å and c/a =
2.711. These values are in agreement with several previous ab
initio calculations [15, 16].

The band structure for graphite close to the Fermi level,
and along the inter-planar direction (the KH direction in the
Brillouin zone), is shown figure 1(a). Within about 1 eV around
the Fermi level we have four electronic bands, two derived
from π orbitals and two from the π∗ orbitals of the basis atoms.
The inner pair of the π /π∗ bands is degenerate and shows
very little dispersion along the KH direction in the Brillouin
zone. This pair of bands is electron-like and hole-like towards
the K and H points, respectively. The width of the electron-
like part of the band is very slightly wider than the width of
the hole-like part. Also, since the band crosses the Fermi
level at approximately KH/3, it indicates that the hole state
is more elongated than the electron state. These results are in
agreement with previous first-principles works (see, e.g. [8]).
The outer pair of the π /π∗ bands are dispersive along the KH
direction, with the π and π∗ bands dispersing up and down the
energy axis, respectively. Our calculated energy gap between
the π and π∗ bands is 0.07 eV at the H point and 1.41 eV at
the K point.

In figure 2(a) we have plotted the in-plane dispersion of
the electronic bands near the Fermi level. (We performed
calculations along several in-plane directions, and found
similar results.) An attempt to fit such curves close to the
K point suggests a purely quadratic behaviour, indicating
that the carriers are normal (massive) electrons. From these
calculations we estimated the effective electron mass value
m∗ = 0.043me. This value is consistent with the reported
theoretical value of 0.045me [8, 17] and close enough to

Table 1. Electron and hole effective masses and velocities in
monolayer graphene, bilayer graphene, multilayer graphene, and
graphite. Available experimentally measured results are presented in
parentheses.

Structure
Effective mass
(m∗/me)

Velocity
(106 m s−1)

Graphite 0.043 (0.045) [8, 17] 0.94 (0.91) [19]
Monolayer
graphene ‘electrons’

0.0 1.11 (1.093–1.10)
[3, 26]

Monolayer
graphene ‘holes’

0.0 1.04

Bilayer graphene 0.022 1.10 (1.07) [28]
Multilayer graphene 0.031 1.00 (1.03) [29]

the experimental result of 0.06me [18]. We also calculated
the electron (in-plane) velocity of the magnitude 0.94 ×
106 m s−1. This result is in good agreement with the angle-
resolved photoemission data obtained by Zhou et al [19]
who obtained a value of 0.91 × 106 m s−1. When fitting
the in-plane dispersion of hole bands we needed to include
both the linear and quadratic terms. This suggests that the
behaviour of holes can be described as a mixture of Dirac-
like (massless) and normal (massive) particle. Our conclusions
regarding the quasi-particle nature of the electrons (as normal)
and holes (as a mixture of normal and Dirac-like) near the
Fermi level in graphite support the phase analysis of quantum
oscillations [20] and the quantum Hall effect [21].

The shape and symmetry of the Fermi surface in graphite
has long been a topic of discussion, with contradictory views
in the 1950s [22], 1960s [6] and 1970s [23]. First-principles
band structure calculations by Tatar and Rabii in 1982 [8]
provide the accepted picture for the band structure, and shape
and symmetry of the Fermi surface. It should be noted that
Tatar and Rabii constructed the Fermi surface by adopting
two parametrized fitting procedures of bands. In our work
the Fermi surface was mapped without the need for any
parameterization of bands. Our calculations have presented
results, shown in panel (a) of figures 3 and 4, in close
agreement with those by Tatar and Rabii. We find that the
Fermi surface is elongated along the KH direction. The shape
of the Fermi surface can be described as a warped and squeezed
cylinder, with almost equal width at the K and H points. The
squeezed feature can be seen as a ‘neck’ at KH/3. The warped
triangular cross-sections at the kz = 0 and KH heights can be
clearly noticed in figure 4(a).

3.2. Monolayer graphene

The electronic band structure of graphene is shown in
figure 1(b). Due to only two basis atoms in graphene there
is only one pair of π /π∗ bands, which is degenerate at the K
point, coinciding with the Fermi level. This means that this
band is partially filled at the K point, and thus is contributed
by both electron-like and hole-like states. Figure 2(b) shows
that the dispersion of this band on the planar Brillouin zone
around the K point (i.e. close to the Fermi level) is entirely
linear (Dirac-like) for both electrons and holes. The presently
computed dispersion curve for the π band agrees very well
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Figure 1. The band structure plot of (a) bulk graphite along the KH direction and close to the Fermi level and (b) monolayer graphene along
the high-symmetry directions (K�M). The hexagonal Brillouin zone is also shown.

with the angle-resolved photoemission measurements made by
Ohta et al [24]. The small level of disagreement between
theory and experiment with regards to the energy locations at
various in-plane wavevectors is well within the error margin
of the experimental measurements. Our results are also in
very good agreement with the results obtained by Latil and
Henrard [25] who used an almost identical theoretical and
computational method.

From our calculations of the in-plane dispersion curves
slightly above and slightly below the Fermi energy we have
estimated velocity results of 1.11 × 106 m s−1 and 1.04 ×
106 m s−1 for electrons and holes, respectively. We attribute
the difference between the hole and electron velocities of
approximately 6% to the asymmetry of their band states.
These results are in excellent agreement with the cyclotron
resonance study by Deacon et al [3] who measured the electron

velocity of 1.093 × 106 m s−1 and estimated the hole velocity
to be 5% lower than the electron velocity. Our calculated
electron velocity is also in excellent agreement with the value
of 1.1 × 106 m s−1 deduced by Jiang et al [26] using infrared
spectroscopic studies.

The Fermi surface for the monolayer graphene is shown in
figure 3(b). Although the Fermi surface for an ideal graphene
sheet has an area of zero size, the finite size of the plotted
shape is due to the thermal broadening in the calculations. The
resulting shape of the Fermi surface is a triangle centred at
the K points in the Brillouin zone. As our calculations have
been made using a supercell geometry, the resulting Fermi
surface extends normal to the graphene sheet with both ends
being triangles of equal dimensions. A clearer picture of the
computed shape is shown in figure 4(b).
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Figure 2. The in-plane electronic band structure for the innermost π∗ band near the K point for (a) graphite, (b) monolayer graphene,
(c) bilayer graphene, and (d) multilayer (7-layer) graphene. The insets indicate the dispersion curves for the outer pairs of the π /π∗ bands.

Figure 3. Top view of the Fermi surfaces of (a) graphite, (b) monolayer graphene, (c) bilayer graphene, and (d) multilayer graphene.
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Figure 4. Diagrams showing details of the full extent of the Fermi surfaces, of (a) graphite, (b) monolayer graphene, (c) bilayer graphene, and
(d) multilayer graphene.

3.3. Bilayer graphene

We have modelled the bilayer graphene using the symmetric
double layer (i.e. the Bernal, or AB, stacking of graphite)
arrangement. Due to a basis of four atoms, there are two
pairs of π /π∗ bands. Consistent with previous theoretical
works [25, 27], we find that similar to the monolayer graphene,
the bilayer graphene is also a zero-gap semiconductor with the
inner pair of the π /π∗ bands being degenerate at the K point.
There is an energy gap of 0.8 eV at the K point between the
outer pair of the π /π∗ bands. This splitting arises from the
interaction between the two layers. Band structure calculations
for the bilayer graphene suggest that the in-plane dispersion
relation of the inner π∗ electronic band at the K point has
a mixture of linear and quadratic behaviour. The quadratic
behaviour of the dispersion relation is well accepted [2]. From
our results we extract the carrier effective mass 0.022me and
velocity 1.10 × 106 m s−1. The results from the tunnelling
measurements done by Li et al [28] suggest that the velocity of
the carriers in bilayer graphene is 1.07 × 106 m s−1, which is
in fairly good agreement with our results.

The inter-layer interaction in the bilayer graphene results
in a noticeable change in the shape of the Fermi surface around
K, the Brillouin zone edge point. The triangular Fermi surface
for the monolayer graphene changes to a hexagonal shape.
A detailed side view in figure 4(c) suggests that an identical
hexagonal shape is maintained for both electrons and holes.
This is rather different from the results of earlier tight-binding
calculations (see, e.g. [2]) which have explained the change in
the Fermi surface from the monolayer to the bilayer structure
in terms of trigonal distortion (or warping).

3.4. Multilayer graphene

From the electronic band structure calculations for a seven-
layer graphene system, we find that there are seven pairs of

π /π∗ bands. The innermost π /π∗ pair is degenerate at the K
point, making the system a zero-gap semiconductor. The outer
six pairs of the π /π∗ bands are split, with the minimum and
maximum gaps at K between the π and π∗ bands being 0.14 eV
and 1.45 eV, respectively. The energy gap of 1.45 eV between
the outermost pair is close to that for bulk graphite. The
splittings of the π and π∗ bands are due to different amounts
of interactions between the various atomic layers.

We further made calculations for the in-plane electronic
band structure, close to the K edge of the Brillouin zone.
We observe that the in-plane dispersion of the electronic
band structure (shown in figure 2(d)) is quite similar to the
dispersion in bulk graphite, but with a slightly more curvature
close to the K edge. The values of the electron effective mass
and velocity for the multilayer graphene are different compared
with bulk graphite. The effective mass of the multilayer
graphene is reduced by roughly 28%, and the velocity, of 1.0×
106 m s−1, has increased by 6.4%. Our calculated electron
velocity agrees well with value deduced by Sadowski et al [29]
from their observed cyclotron resonance-like and electron–
positron-like transitions in infrared transmission experiments.
As is the case with the bilayer graphene, we could not find
any experimental or other theoretical measurements of the
electron effective mass for a multilayer graphene to compare or
contrast our results with. The Fermi topology for the multilayer
graphene shows a warped triangular shape, as shown in paned
(d) of figures 3 and 4.

3.5. Gradual changes from graphene to graphite

From our work we are able to draw conclusions regarding
the gradual development in the electronic properties with the
dimensionality change from the two-dimensional graphene
to the three-dimensional graphite. Within the energy range
±2.0 eV around the Fermi level, the occupied and unoccupied
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bands are of the orbital characters π and π∗, respectively. The
number of the pair of π /π∗ bands is directly related to the
number of basis atoms in the unit cell: e.g. one for graphene,
two for bilayer graphene and for bulk graphite, and seven for
the seven-layer graphene. For a multilayer graphene there
is noticeable splitting in the π and π∗ bands, except for the
innermost pair at the K point.

The in-plane electronic band dispersion is Dirac-like
for graphene, a mixture of linear and quadratic for bilayer
graphene and multilayer graphene, and quadratic for bulk
graphite. The electron velocity decreases from the single-layer
graphene to the bilayer and multilayer graphene, and further to
bulk graphite. The electron effective mass gradually increases
from the bilayer graphene to multilayer graphene and then to
bulk graphite. These parameters and other previously reported
values are summarized in table 1. The shape of the Fermi
surface changes as follows: triangle for graphene, hexagonal
for bilayer graphene, warped triangle for multilayer graphene,
and more warped triangle for bulk graphite. While the cross-
section of the Fermi surface does not change along the KH
direction for ideal monolayer graphene, bilayer graphene and
multilayer graphene, it has a neck-like feature at the KH/3
point for bulk graphite.

It is interesting to examine the changes in the carrier
velocity and effective mass with increase in the number of
graphene atomic layers. From panel (a) of figure 5 we note
that the effective mass sharply increases as the system changes
from the single-layer graphene to the bilayer graphene, and
then it follows a gradual increase as the atomic layers increase
further. The carrier velocity, on the other hand, shows a
gradual decrease as we increase the number of layers, as seen
in panel (b) of figure 5. From the variations of these two carrier
parameters we conclude that the electronic properties of bulk
graphite can be realized if we consider at least 8–10 graphene
layers. Our observations are fully supportive of the work by
Huang et al [30] who have concluded that the average inter-
layer spacing for the few-layer graphenes approaches the bulk
graphite value as the number of layers increases to eight.

4. Summary and conclusion

We have studied the electronic properties of graphene, bilayer
graphene, multilayer graphene, and bulk graphite using the
plane-wave pseudopotential method and the density functional
theory within the local density approximation. The shape of the
Fermi surface is found to be triangle for graphene, hexagonal
for bilayer graphene, warped triangle for the multilayer
graphene, and more warped triangle for bulk graphite. For
graphite the cross-section of the Fermi surface has a neck-
like feature at the KH/3 point. The in-plane electronic band
structure near the zone edge K is Dirac-like for graphene,
a mixture of linear and quadratic for bilayer graphene and
multilayer graphene, and quadratic for bulk graphite. Our work
suggests that the electron mass (velocity) gradually increases
(decreases) with the thickness of the graphene layer. The
electron effective mass is calculated to be 0.022me, 0.031me,
and 0.043me for bilayer graphene, multilayer graphene, and
graphite, respectively. The electron and hole velocities in

Figure 5. The change in the carrier (a) effective mass and
(b) velocity as a function of the number of graphene atomic layers.
Also shown are the results for graphite. The symbol shows the
numerical results and the line is a guide to the reader.

monolayer graphene are 1.11 × 106 and 1.04 × 106 m s−1,
respectively. The electron velocity gradually reduces to
1.10 × 106, 1.0 × 106, and 0.94 × 106 m s−1 for bilayer
graphene, multilayer graphene, and graphite, respectively. Our
calculated values of the carrier velocities for these systems
are in agreement with experimentally measured results. Our
results also suggest that the electronic properties of a graphene
sample with 8–10 atomic layers would approach that of bulk
graphite.
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